Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

FKBP25 participates in DNA double-strand break repair.

Identifieur interne : 000120 ( Main/Exploration ); précédent : 000119; suivant : 000121

FKBP25 participates in DNA double-strand break repair.

Auteurs : David Dilworth [Canada] ; Fade Gong [États-Unis] ; Kyle Miller [États-Unis] ; Christopher J. Nelson [Canada]

Source :

RBID : pubmed:30620620

Descripteurs français

English descriptors

Abstract

FK506-binding proteins (FKBPs) alter the conformation of proteins via cis-trans isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25's catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.

DOI: 10.1139/bcb-2018-0328
PubMed: 30620620
PubMed Central: PMC7457334


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">FKBP25 participates in DNA double-strand break repair.</title>
<author>
<name sortKey="Dilworth, David" sort="Dilworth, David" uniqKey="Dilworth D" first="David" last="Dilworth">David Dilworth</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6</wicri:regionArea>
<wicri:noRegion>BC V8W 3P6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gong, Fade" sort="Gong, Fade" uniqKey="Gong F" first="Fade" last="Gong">Fade Gong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Miller, Kyle" sort="Miller, Kyle" uniqKey="Miller K" first="Kyle" last="Miller">Kyle Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Christopher J" sort="Nelson, Christopher J" uniqKey="Nelson C" first="Christopher J" last="Nelson">Christopher J. Nelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6</wicri:regionArea>
<wicri:noRegion>BC V8W 3P6</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:30620620</idno>
<idno type="pmid">30620620</idno>
<idno type="doi">10.1139/bcb-2018-0328</idno>
<idno type="pmc">PMC7457334</idno>
<idno type="wicri:Area/Main/Corpus">000378</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000378</idno>
<idno type="wicri:Area/Main/Curation">000378</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000378</idno>
<idno type="wicri:Area/Main/Exploration">000378</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">FKBP25 participates in DNA double-strand break repair.</title>
<author>
<name sortKey="Dilworth, David" sort="Dilworth, David" uniqKey="Dilworth D" first="David" last="Dilworth">David Dilworth</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6</wicri:regionArea>
<wicri:noRegion>BC V8W 3P6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gong, Fade" sort="Gong, Fade" uniqKey="Gong F" first="Fade" last="Gong">Fade Gong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Miller, Kyle" sort="Miller, Kyle" uniqKey="Miller K" first="Kyle" last="Miller">Kyle Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Christopher J" sort="Nelson, Christopher J" uniqKey="Nelson C" first="Christopher J" last="Nelson">Christopher J. Nelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6</wicri:regionArea>
<wicri:noRegion>BC V8W 3P6</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochemistry and cell biology = Biochimie et biologie cellulaire</title>
<idno type="eISSN">1208-6002</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Proliferation (MeSH)</term>
<term>DNA Breaks, Double-Stranded (MeSH)</term>
<term>DNA Repair (MeSH)</term>
<term>Fluorescent Antibody Technique (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Tacrolimus Binding Proteins (metabolism)</term>
<term>Tumor Cells, Cultured (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cassures double-brin de l'ADN (MeSH)</term>
<term>Cellules cancéreuses en culture (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protéines de liaison au tacrolimus (métabolisme)</term>
<term>Réparation de l'ADN (MeSH)</term>
<term>Technique d'immunofluorescence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de liaison au tacrolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Proliferation</term>
<term>DNA Breaks, Double-Stranded</term>
<term>DNA Repair</term>
<term>Fluorescent Antibody Technique</term>
<term>Humans</term>
<term>Tumor Cells, Cultured</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cassures double-brin de l'ADN</term>
<term>Cellules cancéreuses en culture</term>
<term>Humains</term>
<term>Prolifération cellulaire</term>
<term>Réparation de l'ADN</term>
<term>Technique d'immunofluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">FK506-binding proteins (FKBPs) alter the conformation of proteins via
<i>cis-trans</i>
isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25's catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30620620</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1208-6002</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>98</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Biochemistry and cell biology = Biochimie et biologie cellulaire</Title>
<ISOAbbreviation>Biochem Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>FKBP25 participates in DNA double-strand break repair.</ArticleTitle>
<Pagination>
<MedlinePgn>42-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1139/bcb-2018-0328</ELocationID>
<Abstract>
<AbstractText>FK506-binding proteins (FKBPs) alter the conformation of proteins via
<i>cis-trans</i>
isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25's catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dilworth</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Fade</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Kyle</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA198279</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA201268</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Biochem Cell Biol</MedlineTA>
<NlmUniqueID>8606068</NlmUniqueID>
<ISSNLinking>0829-8211</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>147478-69-1</RegistryNumber>
<NameOfSubstance UI="C074856">FKBP3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="Y">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="Y">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005455" MajorTopicYN="N">Fluorescent Antibody Technique</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014407" MajorTopicYN="N">Tumor Cells, Cultured</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA repair</Keyword>
<Keyword MajorTopicYN="Y">FKBP</Keyword>
<Keyword MajorTopicYN="Y">homologous recombination</Keyword>
<Keyword MajorTopicYN="Y">olaparib</Keyword>
<Keyword MajorTopicYN="Y">prolyl isomerase</Keyword>
<Keyword MajorTopicYN="Y">prolyl isomérase</Keyword>
<Keyword MajorTopicYN="Y">recombinaison homologue</Keyword>
<Keyword MajorTopicYN="Y">réparation d’ADN</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30620620</ArticleId>
<ArticleId IdType="doi">10.1139/bcb-2018-0328</ArticleId>
<ArticleId IdType="pmc">PMC7457334</ArticleId>
<ArticleId IdType="mid">NIHMS1622407</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2018 Mar 16;46(5):2459-2478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2013 Apr;33(7):1357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23358420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Nov 16;45(20):11989-12004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 22;461(7267):1071-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1041-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):179-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1042:227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23980011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2015 May 22;427(10):1949-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25813344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24927542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 6;288(36):25826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1994 Sep 14;174(1-2):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Aug 21;8(4):1049-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25131201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Nov;24(11):616-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25305135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Oct;1850(10):2017-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25450176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;920:379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22941618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2011 Aug;11(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21803654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Jun;41(3):761-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23697935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Jan 15;29(2):197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25593309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 4;144(5):646-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Sep 29;19(18):1519-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 29;286(30):26267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Nov 19;527(7578):389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26503038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Dev Biol. 2018 Mar 27;18(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29587629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Jul 25;39(1):74-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23890065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Res. 2011 Feb;175(2):214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21268715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2009 Apr;7(4):581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Apr 4;193(1):81-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 24;47(4):497-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jan 22;291(4):1789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26559976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Dec 11;9(5):1703-1717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25464843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2016 Apr 1;22(7):1699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2012 Feb;90(1):55-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21999350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 May 06;4:4863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2017 Oct;38:97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28652145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24553445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Apr 7;44(6):2909-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26762975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2013 Sep;70(18):3243-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23224428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2015 Jan 20;33(3):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25366685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Oct 14;203(1):57-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24100296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2014 Oct;21(10):893-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25195049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Mar 06;10(3):e1004178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24603765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Nov 19;60(4):547-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26590714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):5795-818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22467216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jun 25;274(26):18715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 19;7(1):3795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28630422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2012 Mar;10(3):401-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22205726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(8):e1003667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol Immunopathol. 1996 Sep;80(3 Pt 2):S40-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2014 Jul;20(7):1014-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2015 Jun 5;427(11):2056-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25584861</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Dilworth, David" sort="Dilworth, David" uniqKey="Dilworth D" first="David" last="Dilworth">David Dilworth</name>
</noRegion>
<name sortKey="Nelson, Christopher J" sort="Nelson, Christopher J" uniqKey="Nelson C" first="Christopher J" last="Nelson">Christopher J. Nelson</name>
</country>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Gong, Fade" sort="Gong, Fade" uniqKey="Gong F" first="Fade" last="Gong">Fade Gong</name>
</region>
<name sortKey="Miller, Kyle" sort="Miller, Kyle" uniqKey="Miller K" first="Kyle" last="Miller">Kyle Miller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30620620
   |texte=   FKBP25 participates in DNA double-strand break repair.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30620620" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020